Reação do ácido clorídrico com alumínio por reatividade da cinética química

Luciano Nascimento
Faculdade Estácio de João Pessoa
luciano.ufpe@gmail.com

Anastasia Melnyk
Universidade Federal da Paraíba
anastasiia.ufpb@gmail.com

Resumo
O presente trabalho tem como objetivo utilizar a reação simples de ácido clorídrico e alumínio para estudar os parâmetros cinéticos (Ea e A). O alumínio se mostra um metal ideal para uma série de aplicações, entra delas ligas leves para a indústria química e dentre outras; já o ácido clorídrico, HCl, é um ácido inorgânico forte, seu pKa é de -6,3. Isso significa que, em solução, o H+ dele é facilmente ionizável ficando livre na solução, fazendo com que o pH desta seja muito baixo. Diante de ampla disponibilidade desse metal em nosso dia-a-dia, foi elaborada uma atividade experimental sobre cinética química a partir do estudo dos fatores que afetam a velocidade da reação de oxidação do alumínio em meio ácido, utilizando materiais simples e de baixo custo. Verificou que a reação é exotérmica, liberando calor e que as duas constantes, A e Ea, são conhecidas como parâmetros de Arrhenius da reação, são encontradas experimentalmente e são praticamente independentes da temperatura, mas depende da reação que está sendo estudada.

Reaction of hydrochloric acid with aluminum for reactivity by chemical kinetics

Abstract
This work aims to use the simple reaction of hydrochloric acid and aluminum to study the kinetic parameters (Ea and A). Aluminum shown an ideal metal for a number of applications, enter them light alloys for the chemical industry and among others; have hydrochloric acid, HCl is a strong inorganic acid, its pKa is -6.3. This means that, in solution H + is it easily ionizable being free in solution, making the pH thereof is very low. Faced with widespread availability of this metal in our day-to-day, an experimental activity on chemical kinetics from the study of factors that affect the speed of the aluminum oxidation reaction in acid medium was prepared using simple and inexpensive materials. It found that the reaction is exothermic, releasing heat and that the two constants A and Ea are known as the Arrhenius reaction parameters, are found experimentally and are almost independent of temperature, but depends on the reaction that is being studied.

Keywords: Aluminum. Hydrochloric acid (HCl). Arrhenius parameters. Chemical Kinetics.
1 Intrudução

O alumínio é um metal leve (ρ = 2,70 g/cm³), resistente à corrosão, bom condutor de calor e elétricidade, possui brilho e tem um baixo ponto de fusão – 658°C, por suas excelentes propriedades físico-químicas; entre as quais se destacam o baixo peso específico, a resistência à corrosão, a alta condutibilidade térmica e elétrica, possui baixa resistência à tração (σ), cerca de 90 MPa, podendo alcançar 180 Mpa. Acredita-se que o alumínio tenha se formado através de sucessivas colisões dos átomos de hidrogênio em altas temperaturas e pressões elevadas durante o nascimento do sistema solar, mas a história do alumínio é recente. Apesar de ser o metal mais abundante na crosta terrestre, ele não se encontra naturalmente na forma de metal, mas na forma de óxido (Al₂O₃) no minério da bauxita.

O ácido clorídrico, HCl, é um ácido inorgânico forte, seu pKa é de -6,3. Isso significa que, em solução, o H⁺ dele é facilmente ionizável ficando livre na solução, fazendo com que o pH desta seja muito baixo (BRADY & HUMISTON, 1986). Em sua forma comercial é também conhecido como Ácido Muriático, vendido em concentrações de no mínimo 33%. Sua aparência é de um líquido incolor ou levemente amarelado. Altamente hidroscópico, ou seja, absorve água da atmosfera, por isso o frasco deve permanecer bem vedado para não variar a sua concentração. A formação de ácido clorídrico é bem reativa e deve ser feita com muito cuidado. No meio industrial essa obtenção pode ser feita de duas maneiras: aquecimento a altas temperaturas do gás hidrogênio com o gás cloro, formando o HCl em sua forma pura que é gasosa. Esse gás se dissolve muito bem em água permitindo a confecção da solução de HCl. Ou então com a mistura de ácido sulfúrico (H₂SO₄) com cloreto de sódio (NaCl) formando o dito ácido e sulfato de sódio (Na₂SO₄). A maioria das reações químicas entre um ácido (hidrácido ou oxihidrácido) e um metal, irá liberar gás hidrogênio (H₂) e formar um sal correspondente (RUSSEL, 1992). Algumas reações também liberam outras substâncias, em sua maioria tóxica. O objetivo principal deste artigo consiste em utilizar uma reação simples de ácido clorídrico e alumínio para estudar os parâmetros cinéticos (Ea e A), contextualizando com o ensino e aprendizagem da química geral com outras disciplinas e áreas de pesquisa de forma sistemática, qualitativa e quantitativa para o ensino de engenharia.

2 Fundamentação teórica

A cinética é a área da química que estuda a velocidade das reações químicas e os fatores que a influenciam. Os principais fatores que influenciam numa reação são a temperatura, concentração, superfície de contato, catalisadores e etc. A influência que a temperatura traz é que, quanto mais alta a temperatura do sistema, maior será a energia cinética média das moléculas. E isso promove uma agitação mais expressiva nas partículas, ocasionando então uma frequência maior de choques e com mais força (USBERCO 2006).

Assim, um aumento na concentração de reagentes, aumenta a velocidade da reação porque as colisões se tornam mais frequentes. Um aumento de temperatura aumenta a energia cinética das partículas e consequentemente a energia das colisões também será maior. O aumento da superfície exposta também aumenta a velocidade da reação, pois um maior número de partículas poderá sofrer colisões (ATKINS, 2006).

Muitas reações, tais como, explosões de misturas de hidrogênio e oxigênio ocorrem tão rapidamente que a determinação acuada de suas velocidades se torna difícil. Já outras reações, tal como a ferrugem de algumas ligas, ocorrem tão lentamente que, novamente, é muito difícil de medir a velocidade de reação. Por outro lado, existem muitas reações que ocorrem a velocidades intermediárias, fáceis de medir. Um desses casos é a reação entre uma solução de ácido clorídrico e alumínio. Segundo o indicador responsável nesta reação de ácido clorídrico com alumínio como um experimento para o estudo cinético, não é muito profundo, pois envolve a investigação parâmetros cinéticos dessa reação em nível de segunda ordem. Na Figura 1, observamos uma listagem de alguns metais em ordem crescente de reatividade de alguns metais que são importantes para processos cinéticos (FELTRE, 2001).
Os metais ao final da lista são extremamente reativos, ou seja, a reação de oxidação acima tem grande tendência a oxidarem, tendo no topo da lista os que não são reativos e os metais do meio são moderadamente reativos. O hidrogênio foi incluído nesta listagem, apesar de não ser um metal, pois sua posição na lista separa os metais que reagem com ácido daqueles que não reagem. Através da equação na (1) que o aluminio reage quimicamente com ácido clorídrico, produzindo cloreto de alumínio e liberando gás hidrogênio. A reação pode ser caracterizada como negativa, pois é uma reação exotérmica, apresenta classificação como deslocamento, e podem laboratorialmente serem identificados pela inflamabilidade do gás hidrogênio liberado. No estado sólido, o cloreto de alumínio cristaliza a segunda a estrutura padrão YCl3 com íons Al3+ formando uma face centrada cúbica (MAJIDI et al., 2007). Uma análise minuciosa desta equação (1), onde as s ligações covalentes apolares mantêm os átomos de hidrogênio juntos nas moléculas de hidrogênio. As atrações do tipo ion-dipolo onde os íons de hidrogênio positivos são atraídos para o lado negativo das moléculas de água e os íons cloreto negativos são atraídos para hidrogênio. O dipolo induzido por atrações é do tipo fraco por agir entre as moléculas de hidrogênio. As atrações ion-dipolo, para os íons de alumínio positivos são atraídos para o lado negativo das moléculas de água e os íons cloreto são atraídos para a extremidade positiva do átomo de hidrogênio nas moléculas de água.

Abaixo temos a Figura 2, mostrando a reação entre o ácido clorídrico e o alumínio, onde há uma liberação de calor incrível (reação exotérmica).

Figura 2. Reação entre o ácido clorídrico e alumínio.

\[2\text{Al}(s) + 6\text{HCl}(aq) \rightarrow 2\text{AlCl}_3(aq) + 3\text{H}_2(g)\] (1)

Fonte: Autor.
O cloro de alumínio é um poderoso ácido de Lewis, capaz de reagir de acordo com as reações ácido-base de Lewis com bases de Lewis, como até mesmo as mais fracas de benzenofenona ou mesetileno. Na presença de um iâm cloro, reage de modo a formar AlCl4.

A hidrólise parcial na presença de água forma ácido clorídrico e / ou cloro de hidrogênio. Soluções aquosas de cloro de alumínio se comportam da mesma forma que as soluções de outros sais hidratados contendo ions Al3+. A principal utilização de cloro de alumínio é na fabricação de compostos por reação de Friedel como catalisador em processos catalíticos. Os parâmetros cinéticos podem ser determinados, são determinados em temperatura ambiente, variando-se apenas a concentração de um dos reagentes. A expressão matemática da lei de velocidade relaciona a constante de velocidade com a temperatura é chamada equação de Arrhenius, que pode ser escrita como (MAHAN, 1978):

\[
k = e^{\left(\frac{E_a}{RT}\right)}
\]

Onde A é o coeficiente de proporcionalidade, conhecido por fator pré-exponencial, T a temperatura em Kelvin (K), R a constante universal dos gases,

\[
R = 8,315 \text{ J mol}^{-1} \text{ K}^{-1} = 8,315 \times 10^{-3} \text{ kJ mol}^{-1} \text{ K}^{-1} \cdot e
\]

\[
R = 1,987 \text{ cal mol}^{-1} \text{ K}^{-1} = 1,987 \times 10^{-3} \text{ kcal mol}^{-1} \text{ K}^{-1} .
\]

\[E_a = -R \frac{d \ln k(T)}{d \left(\frac{1}{T}\right)} \]

A equação de Arrhenius e de argumentos baseados na termodinâmica estatística, deu uma interpretação física para a energia de ativação. Segundo Tolman, a energia de ativação seria a diferença entre a energia média de todas as entidades moleculares, com energia suficiente para reagir, e a energia média de todas as entidades moleculares que reagissem ou não. Em outras palavras, Tolman atesta que o negativo do diferencial do logaritmo da constante cinética em relação ao inverso da temperatura seria a energia média das moléculas que reagem menos à energia média de todas as possíveis entidades do sistema.

3 Materiais e métodos

Utilizou-se, neste experimento, os seguintes materiais:
- 01 pipeta de 10,0 mL;
- 01 béquer de 50,0 mL;
- 01 termômetro;
- 01 cronômetro;
- Ácido clorídrico (ácido muriático) HCl 6M;
Primeiramente, foi colocado pedaços de alumínio dentro do béquer de 50,0 mL misturando com ácido muriático do qual, foi realizado medidas de temperatura a ponto de verificação e observar uma reação do tipo exotérmica e liberando hidrogênio na forma gasosa e depois do fim da reação o surgimento do cloreto de alumínio. Foram separados três tubos de ensaios e marcados com as letras A, B e C. Submetendo-os ao que pede na tabela 1. As reações aconteceram em temperatura ambiente (25°C) e nas temperaturas de 10-70 oC. Ao observar as reações nas diferentes temperaturas e homogeneizando a solução com uma leve agitação e acionando o cronômetro em seguida. Para cada tubo, foi medido o tempo necessário para o alumínio ser consumido totalmente.

<table>
<thead>
<tr>
<th>Tabela 1- Ensaios experimentais com ácido clorídrico e alumínio.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensaios</td>
</tr>
<tr>
<td>Tubos</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

4 Resultados e discussão

A princípio, foram realizados cálculos da concentração molar do ácido clorídrico e do alumínio presentes nos ensaios. Como os tempos foram obtidos, calculamos a velocidade média em que cada ensaio que ocorreu, usando-se para tanto a expressão da velocidade média para o consumo de alumínio descrito na equação (4) (CHASSOT,1993),

\[v = -\frac{\Delta A}{\Delta t} \] \hspace{1cm} (4)

Geralmente estes resultados, podem ser vistos na Tabela 2. Empregando a equação da lei da velocidade na equação (5), em seguida, calcularam-se as ordens de reação a e b.

\[v = k \cdot A_t^a \cdot HCl^b \] \hspace{1cm} (5)

A lei da velocidade obtida com os dados foi esta reação é uma reação de quarta ordem.

\[v = k \cdot HCl^3 \cdot A_t^1 \] \hspace{1cm} (6)

Visto que, são conhecidos os valores de [HCl], [A], a, b, e suas as velocidades para cada ensaio, é possível determinar o valor da constante k em temperatura ambiente ou qualquer outra temperatura. Para cada temperatura realizada, obteve uma constante diferente, conforme se ver na Tabela 3. Para encontrar a energia de ativação e o fator pré-exponencial plotou-se um gráfico ln k x 1/T (em Kelvin), ilustrado na Figura 3. Pela equação 3, a inclinação da curva é igual a -Ea/R, então, o valor encontrado para a reação do alumínio com ácido clorídrico é igual a 3,46 kJ/mol e o fator A, é o próprio coeficiente linear da reta, cujo valor obtido foi 4,15.10^4 L3 s^-1 mol^-3. Com esta experiência foi possível apresentar os parâmetros cinéticos que influenciam na velocidade das reações químicas.

5 Conclusões

O estudo da reação de oxidação do metal alumínio em meio ácido possibilitou a interpretação do caráter anfótero desse metal, bem como a sua influência na concentração do ácido clorídrico sobre a velocidade da reação, observando que a cinética química obedece a equação de Arrhenius, influenciada por fatores de velocidade de uma reação química;

A reação é altamente influenciada pela temperatura, devido à forte influência da superfície de contato do alumínio sobre a velocidade da reação;

Apresentação de parâmetros cinéticos que influenciam na velocidade das reações químicas, observando uma reação do tipo exotérmica e liberando hidrogênio na forma
gasosa e depois do fim da reação o surgimento
do cloreto de alumínio, muito utilizado como
catalisador.

6 Agradecimentos
Agradecemos ao CNPq pelo o suporte
financeiro da pesquisa.

Tabela 2. Velocidade de reação em Temperatura ambiente.

<table>
<thead>
<tr>
<th>Tubo</th>
<th>[HCl] mol/L</th>
<th>[Al] mol/L</th>
<th>Tempo (s)</th>
<th>Velocidade Média de Consumo de Alumínio (mol/L.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>1,2345 x 10^{-2}</td>
<td>112,7</td>
<td>- 1,095 x 10^{-4}</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>2,4692 x 10^{-2}</td>
<td>112,8</td>
<td>- 2,189 x 10^{-4}</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>3,7037 x 10^{-2}</td>
<td>108,19</td>
<td>- 3,424 x 10^{-4}</td>
</tr>
</tbody>
</table>

Tabela 3. Valores para construção do gráfico de Arrhinis: lnk versus 1/T.

<table>
<thead>
<tr>
<th>Temperatura (°C)</th>
<th>T (K)</th>
<th>1/T (K^-1)</th>
<th>k (L^3 mol^-3 s^-1)</th>
<th>lnk</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>283</td>
<td>0,00353</td>
<td>9,510 x 10^{-5}</td>
<td>- 9,260</td>
</tr>
<tr>
<td>25</td>
<td>298</td>
<td>0,00336</td>
<td>1,029 x 10^{-4}</td>
<td>- 9,182</td>
</tr>
<tr>
<td>50</td>
<td>323</td>
<td>0,0031</td>
<td>1,139 x 10^{-4}</td>
<td>- 9,080</td>
</tr>
<tr>
<td>70</td>
<td>343</td>
<td>0,002915</td>
<td>1,153 x 10^{-4}</td>
<td>- 9,068</td>
</tr>
</tbody>
</table>

Figura 3- Gráfico de Arrhinis: lnk versus 1/T.

Fonte: Autor.
Referências